Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces

نویسنده

  • Ahmed Hassanein
چکیده

The ability to use liquids as plasma-facing component (PFCs) depends on their interaction with the plasma and the magnetic field. One important issue for the moving liquid is the ability to entrain particles that strike the PFC surface (helium and hydrogen isotopes) while accommodating high heat loads. To study this problem, a numerical model has been developed using the HEIGHTS computer simulation package. The model was used to investigate pumping of He particles by the flowing liquid rather than requiring a standard vacuum system. Hydrogen isotope (DT) particles are likely be trapped in the liquid metal surface (e.g., lithium) due to the high chemical solubility of hydrogen. The incident He particles in the established low-recycling regime at PFCs could be harder to pump using standard vacuum pumping techniques. The analysis results indicate, however, a reasonable chance of adequate helium self-trapping in flowing lithium as PFC without active pumping. 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling hydrogen and helium entrapment in flowing liquid metal surfaces as plasma-facing components in fusion devices

In a fusion reactor, the ability to use liquids as plasma-facing components (PFCs) depends on their interaction with the plasma and the magnetic field. One important issue for the moving liquid is the ability to entrain particles that strike the PFC surface (helium and hydrogen isotopes) while accommodating high heat loads. To study this problem, an analytical model and a two-dimensional compre...

متن کامل

Measurement of implanted helium particle transport by a flowing liquid lithium film

Due to its low atomic number, low sputtering yield, high sputtered ion fraction and excellent thermal properties, liquid lithium has been proposed as a potential candidate for advanced plasma-facing components (PFC). Using a liquid material opens the possibility of a continuously flowing, self-regenerating plasma-facing surface with a small residence time. This would allow such component to han...

متن کامل

Measurement of hydrogen absorption in flowing liquid lithium in the flowing lithium retention experiment (FLIRE)

Flowing metal plasma facing components (PFCs) have the ability to withstand the extreme conditions of future tokamaks. The FLIRE facility at the University of Illinois measures the retention properties, both for helium (ash pumping) and hydrogen (recycling regime, tritium inventory), of candidate liquid PFCs, such as lithium. Results of hydrogen absorption measurements in flowing liquid lithium...

متن کامل

MHD problems in free liquid surfaces as plasma-facing materials in magnetically confined reactors

The development of solid plasma-facing components (PFCs) that can withstand high heat and particle fluxes during normal and abnormal events has proven to be a difficult task for future power-producing magnetically confined reactors. Solid PFC cannot be reliably used because of the large erosion losses during normal and off-normal events such as disruptions and their consequences. The use of liq...

متن کامل

Helium retention and diffusivity in flowing liquid lithium

The flowing liquid surface retention experiment (FLIRE) has been designed to provide fundamental data on the retention and pumping of He, H and other species in flowing liquid surfaces. The FLIRE facility currently uses an ion beam source, which injects ions into a flowing stream of liquid lithium. Its design allows the liquid lithium to flow between two vacuum chambers that become isolated fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002